CRYOGENIC TESTS AT A1 P. Brindza and T. Peterson March 7, 1980 Life tests of the Energy Doubler Satellite Refrigeration system components have begun during January of 1980. report is a short summary of the first 1000 hours of operation. Since one of the purposes of this run was to collect data on the performance of the gas engine, we include summaries of these data. Figures 1 and 2 are a plot of the dry expander adiabatic efficiency* during the run. Table 1 is a summary of gas engine operating data and maintenance. Figure 3 is a bar graph of engine maintenance time and Figure 4 is a bar graph of engine downtime. The gaps in the efficiency data are due to the effect of weekends or short interruptions in the program. The scatter in the data is due to small system oscillations and the difficulty in interpreting vapor pressure thermometers at the ends of their useful ranges. In general, expander efficiency has been quite consistent except for a period between 1/30/80 and 2/1/80 when frozen impurities in the dry engine resulting in excessive blowby caused a reduction in efficiency. This was remedied by simply shutting down and warming the engine slightly. *Barron, Cryogenic Systems (1966), pg. 166. The half-cell heat load was measured during this period and was found to be 35 $^+$ 5W and within the errors is consistent with other measurements. The system was shut down on the evening of March 17 due to the combined effects of a compressor oil pump seal failure, an insulating vacuum leak on the dry engine cryostat, and a leak in the shaft seal on the dry engine. The dry engine continued to maintain its efficiency throughout the last weeks of the run in spite of these accumulating problems. During the course of the run the system warm piping was leak-checked and the wet engine was overhauled in situ without shutting down the refrigerator. Performance of all systems was found to be adequate, however, it was necessary to run the gas engine at near maximum speed to maintain the desired level of refrigeration. Although the load on the refrigerator was only half of a nominal Doubler cryoloop, since the system was run in the cooldown mode during most of the time full load conditions were adequately simulated. Table 1 | Dry Engine Performance Summary | | | | | | | | |--------------------------------|----------------------------------|----------------------------|----------------------------|--------------------------|-------------------------------------|---|----------------------------| | Week
(Sun - Sat) | Approx
Avg.
Speed
(RPM) | Running
Time
(Hours) | Total Running Time (Hours) | Down-
time
(Hours) | Main-
tenance
(Man-
hours) | Notes on performance | Approx. Average Efficiency | | Jan 6-12 | 220 | 98 | 98 | 10 | 25 | Piston shaft bal seal replaced by chevron. Pump cavition problems in hydraulics. | 58% | | Jan 13-19 | 180 | 167 | 265 | 1 | 3 | Reset emergency brake
trip speed. Larger
orifice installed in
hydraulic valve. | 55% | | Jan 20-26 | 180 | 1671/2 | 432 1/2 | 1/2 | 2 | Changed emergency brake plate for higher speed trip. | 61% | | Jan 27 - Feb 2 | 300 | 143 1/2 | 576 | 1/2 | | After refrig shutdown engine up with apparent contamination of seal or valve. | 30% " | | Feb 3-9 | 500 | 143 | 719 | I | ۵ | Threads on exhaust relief cracked, leaking frosted. Replaced. Frost around shaft sea. | 65% | | Feb 10-16 | 500 | 168 | 887 | 0 | 7 | Periodically warmed and tightened shaft seal to try to eliminate frost. | 65% | | Feb 17-23 | 500 | 10 | 897 | 8 | 10 | Fitting on exhaust relief cracked, Replaced. Insulating vacuum bad. | 65% | | Totals | | 897 | | 21 | 51 | |)
 |